El conjunto de todas las funciones presenta una diversidad tal que es casi imposible descubrir propiedades generales interesantes que convengan a todas ellas. Puesto que las funciones continuas constituyen una clase restringida, cabría esperar que se hallaran algunos teoremas no triviales para ellas... Pero los resultados más interesantes y más penetrantes acerca de funciones sólo se obtendrán cuando limitemos aún más nuestra atención a funciones que tienen mayor derecho aún a recibir el nombre de 'razonables', con un comportamiento aún más regular que la mayor parte de las funciones continuas.
IncrementosEl incremento Dx de una variable x es el aumento o disminución que experimenta, desde un valor x = x0 a otro x = x1 de su campo de variación. Así, pues,
o bien
Si se da un incremento Dx a la variable x, (es decir, si x pasa de x = x0 a x = x0 + Dx), la función y = f (x) se verá incrementada en Dy = f (x0 + Dx) - f (x0) a partir del valor y = f (x0). El cociente
Recibe el nombre de cociente medio de incrementos de la función en el intervalo comprendido entre x = x0 a x = x0 + Dx.
Si h ¹ 0, entonces los dos puntos distintos (a, f (a)) y (a+h, f (a+h)) determinan, como en la figura 6, una recta cuya pendiente es: 
Figura 6.
Como indica la figura 7, la 'tangente' en (a, f (a)) parece ser el límite, en algún sentido, de estas 'secantes', cuando h se aproxima a 0. Hasta aquí no hemos hablado nunca del 'límite' de rectas, pero podemos hablar del límite de sus pendientes: La pendiente de la tangente (a, f (a)) debería ser

Definición
[La función f es derivable en a si
Definimos la tangente a la gráfica de f en (a, f (a)) como la recta que pasa por (a, f (a)) y tiene por pendiente f' (a). Esto quiere decir que la tangente en (a, f (a)) sólo está definida si f es derivable en a. (Spivak, 185)]
[Para una función dada f, la derivada f' se designa a menudo por

Leibniz llegó a este símbolo a través de su noción intuitiva de la derivada, que él consideraba no como el límite de los cocientes (f (a+h)-f (a))/h, sino como el 'valor' de este cociente cuando h es un número 'infinitamente pequeño'. Esta cantidad 'infinitamente pequeña' fue designada por dx y la correspondiente diferencia 'infinitamente pequeña' f (x+dx)-f (x) por df (x). Aunque es imposible reconciliar este punto de vista con las propiedades de los números reales, algunos encuentran simpática esta noción de la derivada.
[La derivada de y = f (x) con respecto a x se puede representar por uno cualquiera de los símbolos

Fórmulas de derivación
[En las fórmulas siguientes u, v y w son funciones derivables de x.1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
5. | ![]() |
6. | ![]() |
7. | ![]() |
8. | ![]() |
9. | ![]() |
10. | ![]() |
11. | ![]() |
{Véanse ejemplos de derivadas en (Ayres, 30ss)}
Derivada segunda
[Para una función cualquiera f, al tomar la derivada, obtenemos una nueva función f' (cuyo dominio puede ser considerablemente más pequeño que el de f ). La noción de derivabilidad puede aplicarse a la función f', por supuesto, dando lugar a otra función (f' )', cuyo dominio consiste en todos los punta a tales que f' es derivable en a. La función (f' )' se suele escribir por lo general simplemente f'' y recibe el nombre de derivada segunda de f. Si f'' (a) existe, entonces se dice que f es dos veces derivable en a, y el número f'' (a) recibe el nombre de derivada segunda de f en a...No existe razón alguna para detenerse en la derivada segunda; podemos definir f''' = (f'' )', f'''' = (f''' )', etc. Esta notación se hace pronto difícil de manejar, por lo que se suele adoptar la siguiente abreviación (se trata en realidad de una definición recursiva):





No hay comentarios:
Publicar un comentario